今天是:2025年01月29日 星期三
当前所在位置:首页/照明技术
新闻资讯
照明技术
太原理工大学在用于先进植物照明系统的相稳定且高效深红色发光荧光粉的组分工程设计上取得进展
点击次数:20832   更新时间:2025-01-08   【打印此页】   【关闭

来源:发光材料与器件

无机发光材料在光电设备应用方面前景广阔,但基于氧化物的深红色发光荧光粉效率有限且热稳定性差,阻碍了植物照明技术的发展。

  在此,太原理工乔建伟\时秋峰\王磊LIGHT提出了一种简单的成分工程策略,以稳定相位、提高外部量子效率(EQE)并增强热稳定性。通过在 NaMgPO4:Eu 中引入 SiO4对 PO4 四面体进行化学改性,降低了形成能,从而生成纯橄榄石相,并将 EQE 从 27% 提升至 52%,创下氧化物深红色荧光粉的纪录。同时,引入的深缺陷能级使 150°C 时的热稳定性从 62.5% 提升至 85.4%。

  此外,激发峰和发射峰分别移至 440 nm和 675 nm,与植物光敏色素的特定光谱吸收要求精确匹配。而且,在相对湿度 80% 和 80°C 条件下暴露 6 小时后,发光强度几乎无衰减,采用 Na1.06MgP0.94Si0.06O4:Eu 的 pc-LED 在 300 mA电流下实现了 780 mW的高输出功率。

  他们的研究展示了一种优化无机发光材料性能的简便方法,并为低成本植物照明提供了替代方案。

01.png

  Fig. 1: Synthesis method and structural characterization of olivine-type NaMgPO4:Eu2+phosphor.

  a Schematic image of arc-imaging furnace and b traditional high-temperature solid state method, as well as the crystal structure of the synthesized products. c X-ray powder diffraction patterns of Na1+xMgP1-xSixO4:Eu2+ (x = 0–0.08) phosphors and the simulated pattern profile based on Rietveld refinement results. d Differences in formation energies for four different configurations calculated by using First-Principle calculations based on DFT. e Dependence of the lattice parameters (a, b, c, V) on the doping concentration of Si.

02.png

  Fig. 2: Photoluminescent property of Na1+xMgP1-xSixO4:Eu2+ phosphors.

  aEmission and b excitation spectra of Na1+xMgP1-xSixO4:Eu2+ (x = 0–0.08) phosphors. c CIE chromaticity coordinates of and the image of Na1+xMgP1-xSixO4:Eu2+ phosphors under daylight and 395 nm UV irradiation. d Decay curves and fitting results of Na1+xMgP1-xSixO4:Eu2+ (x = 0, 0.04, 0.08) measured at 78 K under 450 nm pulse laser diode excitation. e Hirshfeld surface and 2D finger print plots with di and de ranging from 0.6 to 2.4 Å calculated by Crystal Explorer software

03.png

  Fig. 3: The quantum efficiency of Na1+xMgP1-xSixO4:Eu2+phosphors.

  a The internal/external quantum efficiency and absorption coefficient of Na1+xMgP1-xSixO4:Eu2+ phosphors. b Comparison of external quantum efficiency of Na1.06MgP0.94Si0.06O4:Eu2+ with the oxide-based red and deep-red phosphors reported to date, including CsMgPO4:Eu (CMPO), Sr3YAl2O7.5:Eu (SYAO), LiSrBO3:Eu (LSBO), Rb3YSi2O7:Eu (RYSO), SrY2O4:Eu (SYO), Sr2Sc0.5Ga1.5O5:Eu (SSGO), Ca4(PO4)2O:Eu (CPO), Sr2ScAlO5:Eu (SSAO) and Ca1.2Eu0.8SiO4 (CESO). c Eu L3-edge X-ray absorption near-edge structure spectra of the reference sample (Eu2O3), NaMgPO4:Eu2+ and Na1.06MgP0.94Si0.06O4:Eu2+ samples

04.png

  Fig. 4: Stability of synthesized phosphors to heat and water. a Normalized emission intensities and b temperature dependent emission spectra of Na1+xMgP1-xSixO4:Eu2+ (x = 0–0.08) as a function of temperature in the range of 20–200 °C. c Na1s XPS spectra of NaMgPO4:Eu2+ (up) and Na1.06MgP0.94Si0.06O4:Eu2+ (down). d Thermoluminescence spectra of NaMgPO4:Eu2+ and Na1.06MgP0.94Si0.06O4:Eu2+ in the temperature range of 25–200 °C. e Schematic illustration of the thermal quenching process mechanism in NaMgPO4:Eu2+ and Na1.06MgP0.94Si0.06O4:Eu2+. f Water-stability of Na1.06MgP0.94Si0.06O4:Eu2+ powder

05.png

  Fig. 5: Performance and application of fabricated pc-LEDs.

  a Electroluminescent (EL) spectra and photographs of the LED fabricated using a GaN chip (λmax = 440 nm) and Na1.06MgP0.94Si0.06O4:Eu2+ phosphor encapsulation under current of 20-300 mA. b Output power, electricity-to-blue light and electricity-to-purple light conversion efficiency under various drive current. c Comparation of the EL spectra of fabricated LED with absorption spectra of chlorophyll-a, chlorophyll-b and phytochrome-FR in plants. d Schematic diagram of commercial 4R1B plant growth lighting device and the fabricated pc-LED, as well as photos of lettuce cultivation under various lighting conditions

Copyright © 2017 江苏省照明学会 版权所有 网络实名:江苏省照明学会 苏ICP备13056405号-2 技术支持:南京雨泽网络 查看旧版